Quantum spin liquids as soft-gap Mott insulators

Yi Zhou (Zhejiang University)

General motivations

- Why quantum spin liquid is interesting?
 - New states of matter in magnetic insulators
 - To understand Mott physics more
Condensed matter physics

- The central issue in condensed matter physics is to discover and understand new states of matters.
Magnetic insulators: Any new states of matter?

- Magnetism is one of the oldest subjects in physics
 - Historically it is associated with magnetic field generated by ordered magnetic moments.
Magnetic insulators: Any new states of matter?

- Magnetic moments order differently in various materials

All these ordered states can be understood from the magnetic interaction between classical vectors (spins).
Magnetic insulators: Any new states of matter?

- What’s the ground state for an antiferromagnet?
- The debate between Néel and Landau
Magnetic insulators: Any new states of matter?

- What’s the ground state for an antiferromagnet?
- The debate between Néel and Landau

- Quantum fluctuations dominate over Néel’s order in one dimension → spin liquid.
- Néel’s order wins at 2D square lattice → AFM order.
- The general situation is still unclear.
Magnetic insulators: **Any new states of matter?**

- It was proposed that quantum spin liquid states can possess very exotic properties.
 - Emerged particles and fields
- **Emergent phenomena**
 - New particles and fields *emerge at low-energy scales but they are totally absent in the Hamiltonian that describes the initial system.*
 - *Different physics laws emerge at different scales.*
Definition: QSL

- Quantum spin liquid (QSL) is an insulator with an odd number of electrons per unit cell which does not order magnetically down to zero temperature due to quantum fluctuations.

 - The quantum disorder is intrinsic, not induced by extrinsic impurities.

 - Not a constructive definition.
Features (or featureless ?)

- “Featureless” Mott insulators.
 - Lattice translational symmetry is respected.
 - The absence of long ranged magnetic order.
 - ...

- Characterized by emergent phenomena and possible quantum orders
Emergent particles and fields

- **Spinon:** $S=1/2$, charge neutral, mobile objects
 - The spinons may obey Fermi or Bose statistics or even nonabelian statistics and there may or may not be an energy gap;

- **Gauge field:** spin singlet fluctuations
 - These spinons are generally accompanied by gauge fields, $U(1)$ or Z_2.

- How can we know which of these plausible states are “real”, especially when $D>1$?
 - *This is a very difficult problem.* I shall outline a few of different approaches to this problem.
Nonlinear σ-model

- From two-spin dynamics to a rotor model

\[\vec{S}_i = S\vec{n}_i, \quad |\vec{n}_i| = 1 \quad \Rightarrow \quad \vec{n}_1 = JS^2\vec{n}_2 \times \vec{n}_1, \quad \vec{n}_2 = JS^2\vec{n}_1 \times \vec{n}_2 \]

\[\vec{L} = \vec{n}_1 + \vec{n}_2, \quad \vec{n} = \vec{n}_1 - \vec{n}_2 \]
\[\Rightarrow \quad \vec{\dot{L}} = 0, \quad \vec{\dot{n}} = -JS^2\vec{n} \times \vec{L} \]

\[\vec{r} = r\vec{n}, \quad \vec{L} = \vec{r} \times \vec{p} \Rightarrow \vec{r} \times \vec{L} = -r^2\vec{p} \]
\[\vec{\dot{r}} = \frac{\vec{p}}{m} = -\left(\frac{1}{mr^2} \right) \vec{r} \times \vec{L}, \quad \vec{\dot{L}} = 0. \]

- Quantum mechanics

\[\vec{L}^2 = l(l+1)\hbar^2, \quad L_z = m\hbar, \quad m = -l, \ldots, l \]

Ground state: \[l = 0 \]

Heisenberg uncertainty: \[\langle \delta \Omega | \delta L \rangle \geq \hbar, \quad \langle \delta L \rangle \rightarrow 0 \quad \Rightarrow \quad \langle \delta \Omega \rangle \rightarrow \infty \]
Nonlinear σ-model

- Many spin problem: rotor representation

$$H \rightarrow \frac{1}{2I} \sum_i \vec{L}_i^2 + J \sum_{<i,j>} \vec{n}_i \cdot \vec{n}_j$$

$2IJ >> 1 \Rightarrow$ magnetically ordered

$2IJ << 1 \Rightarrow$ spin liquid state

frustration \Rightarrow quantum disordered state

- How does the magnitude of spin enters?

$$S = \int dt \left(\frac{I}{2} \sum_i \dot{\vec{n}}_i^2 + J \sum_{<i,j>} \vec{n}_i \cdot \vec{n}_j \right) + S_{\text{Berry's Phase}}$$

Topological term (F.D.M. Haldane)

Qualitative difference between ground states of integer and half-odd-integer spin chains (Haldane conjugation)
Resonating Valence Bond (RVB)

- Issue: **the nonlinear σ-model approach becomes too difficult to implement in $D>1$.**

 P.W. Anderson: Why not just “guess” the wave-function...

The term RVB was first coined by Pauling (1949) in the context of metallic materials.
Problem: Is there any simple way to obtain reasonable good variational parameters in RVB wave functions?

Anderson and Zou: We may construct one from BCS wave-function...

\[
|\Psi_{BCS}\rangle = \prod_k \left(u_k + v_k c_k^+ c_{-k}^\downarrow \right) |0\rangle, \quad |\Psi_{RVB}\rangle = P_G |\Psi_{BCS}\rangle
\]

The number of electrons in a BCS wave-function is not fixed. There can be 0, 1, or 2 electrons in a lattice site. The Gutzwiller projection removes all the double occupied components. An insulator state is obtained when # of electron = # of lattice sites.

Later, physicist apply this type of wave-function to different lattice systems with different Hamiltonians and find interesting and rather good results when the \(|\Psi_{BCS}\rangle\) is chosen correctly.
R VB: spinons and gauge fields

• How about excited states?

The spin excitations are electron-like (or superconductor quasiparticle-like, $S=1/2$) except that they do not carry charge, so called spinons.

$$\Psi_{excited} = P_G \gamma_{k\sigma}^+ \gamma_{-k\sigma}^+ \Psi_{BCS}$$

$$\gamma_{k\sigma} = u_k c_{k\sigma} + v_k c_{-k\sigma}$$

spions: $S=1/2$, charge neutral, mobile objects

Question: Can this simple picture survives Gutzwiller projection?
Confinement of spinons

- X.-G. Wen used the tool of lattice gauge theory to show that spinons may be confined with other spinons to form $S=1$ excitations after Gutzwiller projection.

Structure of projected wave-function

- X.-G. Wen also invented a new mathematical tools (Projective Symmetry Group) to classify spin-liquid states within the Gutzwiller-BCS approach.

Schwinger bosons

- People also use a similar approach where spins are represented by Schwinger bosons. Then spin excitations are $S=1/2$ bosons instead of fermions in projected BCS approach.
Other aspects of theory

- **Exact solvable models**
 - Kitaev honeycomb model changed our view on spin liquids significantly
 - A spin liquid is not necessary to be spin-rotation-invariant.
 - The statistics of spinons can be non-abelian.
 - Spin-orbital effect, etc.
 - ...

- **Other approaches**
 - Analytical methods
 - Bethe Ansatz, Bosonization, CFT, …
 - Numerical methods
 - Exact Diagonalization, DMRG, PEPS / Tensor Network, QMC, CDMFT, …

- **Spin liquids with spin S>1/2**
 - ...

for a review, see YZ, Kazushi Kanoda, Tai-Kai Ng (2014), invited by RMP
Existing $S=1/2$ quantum spin liquid candidates at $D>1$

k-(ET)$_2$Cu$_2$(CN)$_3$ (2003)
$\text{Pd-(dmit)$_2$(EtMe$_3$Sb)}$ (2008)
$\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$ (2007)

$\text{Ba}_3\text{CuSb}_2\text{O}_9$ (2011) quasi 1D?
$\text{Na}_4\text{Ir}_3\text{O}_8$ (2007)
$\text{LiZn}_2\text{Mo}_3\text{O}_8$? (2012)
TABLE III Spin liquid materials summary

<table>
<thead>
<tr>
<th>Material</th>
<th>Triangular κ-($\text{ET})_2\text{Cu}_2(\text{CN})_3$</th>
<th>Triangular M$[\text{Pd}(\text{dmit})_2]_2$</th>
<th>Kagome $\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$</th>
<th>Hyper-Kagome, $\text{Na}_4\text{Ir}_3\text{O}_8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific heat</td>
<td>Gapless, $\gamma = 15$ mJ/K2 mol, Field-independent (*2)</td>
<td>Gapless, $\gamma = 20$ mJ/K2 mol, Field-independent (*8)</td>
<td>Gapless, $C \sim T^\alpha$ at low-T, $\alpha \leq 1$ (*13), $\alpha = 1.3$ (*14) Field-dependent broad peak (*11, *13)</td>
<td>Gapless, $C \sim T^2$ (*19), $C \sim \gamma T + \beta T^{2.4}$, $\gamma = 2$ mJ/K2 mol (*20), Field-independent (*19, *20)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>Capped; $\Delta = 0.46$ K (*3)</td>
<td>Gapless; finite κ/T (*9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMR shift</td>
<td>Not precisely resolved (*4)</td>
<td>Not precisely resolved (*10)</td>
<td>A broad peak at 50 K for ^{17}O (*14), at 25-50 K for ^{35}Cl (*15), Finite at low-T (*14)</td>
<td></td>
</tr>
<tr>
<td>NMR $1/T_1$</td>
<td>Inhomogeneous $1/T_1$, Power law, $^1\text{H} 1/T_1; \sim T$ / $\sim T^2$ at $T < 0.3$K (two components) (*1), $^{13}\text{C} 1/T_1; \sim 1/T^{1.5}$ at $T < 0.2$ K (stretched exponential) (*10)</td>
<td>Inhomogeneous $1/T_1$, Power law, $^{13}\text{C} 1/T_1; \sim 1/T^{1.5}$ at $T < 0.2$ K (stretched exponential) (*10)</td>
<td>Power law, $1/T_1 \sim T^\alpha$ at low-T, $\alpha \sim 0.73$ for ^{17}O (*14), $\alpha \sim 0.5$ for ^{63}Cu (*15), Field-induced spin freezing (*16)</td>
<td></td>
</tr>
<tr>
<td>μSR</td>
<td>No internal field at 0 T (*5, *6)</td>
<td></td>
<td>No internal field at 0 T (*17)</td>
<td></td>
</tr>
<tr>
<td>Neutron</td>
<td></td>
<td></td>
<td>Inelastic scattering \sim no excitation gap (*11), Fractionalized excitations with a continuum (*18)</td>
<td></td>
</tr>
</tbody>
</table>
Experimental detection of spin liquid states?

- How to identify and characterize spin liquid states in established materials?

Patrick A. Lee: All these materials may be described by some kind of projected BCS (or Fermi liquid) state at low temperature.

P.A. Lee is perhaps the strongest believer of spin liquid states. He works most closely with experimentalist to show that spin liquids exist in nature.

He noticed a common feature of most of the spin liquid candidates discovered so far: they are all close to the metal to insulator transition.

⇒ Question: What is the physical significance of this observation?
Further experimental proposals

- **Optical conductivity**: gapless spinons, power law behavior

 Expts: 1) κ-ET organic salt, S. Elsässer, et. al. (U. Stuttgart group), PRB 86, 155150 (2012).

- **GMR-like setup**: oscillatory coupling between two FM s via a QSL spacer

- **Thermal Hall effect**: different responses between magnons and spinons

- **Sound attenuation**: spinon-phonon interaction, spinon lifetime, gauge fields

- **ARPES**: electron spectral function for a QSL with spinon FS or Dirac cone

- **Neutron scattering**: spin chirality, DM interaction, Kagome lattice

- **Spinon transport**: measure spin current flow through M-QSL-M junction

Motivation 1: A generic framework to compare theoretical predictions of QSLs to experimental data is still missing at the phenomenological level.
Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound \(\kappa-(BEDT-TTF)_{2}Cu_{2}(CN)_{3} \)

Sebastian Elsässer, Dan Wu, and Martin Dressel*

Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

John A. Schlüter
Material Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, USA

\[
\sigma(\omega) \sim \omega^n
\]

\[
\eta = \begin{cases}
3.33, & \omega > \frac{k_B T}{\hbar \tau_{el}} \\
2, & \omega < \frac{k_B T}{\hbar \tau_{el}}
\end{cases}
\]

T.K.Ng and P.A.Lee (2007)

\[1 \text{ cm}^{-1} \sim 3 \times 10^{10} \text{ Hz}\]

\[\hbar \sim 6.6 \times 10^{-16} \text{ eV s}\]

\[1 \text{ cm}^{-1} \sim 2 \times 10^{-5} \text{ eV} \sim 0.2 \text{ K}\]
Difficulties in QSL theory

- What’s the low energy effective theory for QSLs?
 - Confinement vs. deconfinement
 - Spinons are not well defined quasiparticles even though the $U(1)$ gauge field is deconfined. $\Sigma'' \propto \omega^{2/3}$

- Lack of Renormalization-group scheme to illustrate possible effective theories as in Fermi liquid theory.

Motivation 2: Could we construct an effective theory with “electrons” or “dressed electrons” (quasiparticles) directly?

\[\hat{c}^+ = \hat{f}^+ \hat{h}, \]
\[\hat{f} \rightarrow e^{i\theta} \hat{f}, \]
\[\hat{h} \rightarrow e^{i\theta} \hat{h}. \]
Spin liquids in the vicinity of metal-insulator transition

- **Pressure effect**
 - $\kappa-(ET)_2Cu_2(CN)_3$: Z_2 QSL \rightarrow superconductor
 - $Pd-(dmit)_2(EtMe_3Sb)$: $U(1)$ QSL \rightarrow metal
 - $Na_4Ir_3O_8$: QSL \rightarrow metal

- **Importance of charge fluctuations**

![Schematic phase diagram on triangular lattice](image)

- Mott transition
- Heisenberg model
- 120° AF order
- Fermi liquid
- metal
- insulator
- U/t
QSL as a soft-gap Mott insulator

Mott transition

Fermi liquid

metal

insulator

Heisenberg model
AFM order

U / t

Schematic DOS (from optical conductivity and other expts.)

$\rho(E) \propto |E - \mu|^{\eta z}$
Questions

• What kind of charge fluctuations should be the key to QSLs?

• Can we formulate a phenomenological theory for QSLs in the vicinity of Mott transition starting from the metallic side?
Quasiparticles

- When electron-electron interactions are adiabatically turned on, the low energy excited states of interacting N-electron systems evolve in a continuous way, and therefore remain one-to-one correspondence with the states of noninteracting N-electron systems.

- **Assumption**: The same labeling scheme through fermion occupation number can be applied to fermionic QSLs.

Interaction between quasiparticles

\[
\delta E = \sum_{p\sigma} \left(\frac{p^2}{2m^*} - \mu \right) \delta n_{p\sigma} + \frac{1}{2} \sum_{pp'\sigma\sigma'} f_{pp'} \delta n_{p\sigma} \delta n_{p'\sigma'} + O(\delta n^3)
\]

\[
\delta E = E - F_0, \quad \delta n_{p\sigma} = n_{p\sigma} - n_{p\sigma}^0
\]

Quasiparticle energy

\[
\tilde{\varepsilon}_{p\sigma} = \frac{p^2}{2m^*} + \sum_{p'\sigma'} f_{pp'} \delta n_{p'\sigma'}
\]
Landau parameters

Spin symmetric and antisymmetric decomposition

\[f_{pp'}^{\sigma \sigma'} = f_{pp'}^s \delta_{\sigma \sigma'} + f_{pp'}^a \sigma \sigma' \]

Isotropic systems

3D: \[f_{pp'}^{s(a)} = \sum_{l=0}^{\infty} f_{l}^{s(a)} P_l(\cos \theta) \]

2D: \[f_{pp'}^{s(a)} = \sum_{l=0}^{\infty} f_{l}^{s(a)} \cos(l \theta) \]

Dimensionless Landau parameters

\[F_{l}^{s(a)} = N(0) f_{l}^{s(a)} \]
Ideas

- **Effective theory with chargeful quasiparticles**
 - “Building blocks” are chargeful quasiparticles instead of spinons.
 - Both Fermi liquids and quantum spin liquids can be described within the same framework.

- **Physical quantities will be renormalized**
 - By the interaction between quasiparticles.

- **Electrically insulating but thermally conducting state**
 - Can be achieved in the framework of Landau’s Fermi liquid theory with properly chosen Landau parameters.
Quasi-particle transport (I)

Particle (charge or mass) current carried by quasi-particles

\[\mathbf{J} = \sum_p \delta \tilde{n}_p \mathbf{v}_p = \sum_p \delta n_p \mathbf{j}_p, \quad \mathbf{j}_p = \mathbf{v}_p - \sum_{p'} f_{pp'} \frac{\partial n^0}{\partial \varepsilon_{p'}} \mathbf{v}_{p'} \]

\[\delta \tilde{n}_p = n_p - \tilde{n}_p^0 \]

\[\tilde{n}_p^0 = n_F (\varepsilon_p - \mu) \] is local equilibrium occupation number

⇒ \[\mathbf{J} = \frac{m}{m^*} \left(1 + \frac{F^s_i}{d} \right) \mathbf{J}^0 \]

where \(\mathbf{J}^0 \) is the current carried by corresponding non-interacting quasiparticles.
Quasi-particle transport (I)

\[
J = \frac{m}{m^*} \left(1 + \frac{F_{1s}}{d} \right) J^0
\]

Galilean invariance is broken by the periodic crystal potential

\[
\Rightarrow \frac{m^*}{m} \neq 1 + \frac{F_{1s}}{d}
\]

charge current is always renormalized by the interaction.

The electron system will be electrically insulating when

\[
1 + \frac{F_{1s}}{d} \rightarrow 0 \quad \text{or} \quad \frac{m}{m^*} \rightarrow 0
\]
Quasi-particle transport (II)

Thermal current carried by quasi-particles

\[\mathbf{J}_Q = \sum_p \delta \tilde{n}_p (\varepsilon_p - \mu) \mathbf{v}_p = \sum_p (\varepsilon_p - \mu) \mathbf{v}_p \left(\delta n_p - \sum_{p'} \frac{\partial n^0_{p'}}{\partial \varepsilon_p} f_{pp'} \delta n_{p'} \right) \]

\[\Rightarrow \quad \mathbf{J}_Q = \frac{m}{m^*} \mathbf{J}_Q^0 \]

Thermal current is renormalized by the factor \(m / m^* \)

A quantum spin liquid phase will be achieved through

\[1 + \frac{F_{1s}}{d} \to 0, \quad \frac{m}{m^*} \neq 0 \]

strong charge (current) fluctuations in the \(l = 1 \) channel
Framework of effective theory

Effective theory = Landau Fermi-liquid-type theory with chargeful quasiparticles + singular Landau parameters

Elementary excitations (particle-hole excitations) described by Landau transport equation is chargeless at $q=0$ and $\omega=0$, but charges are recovered at finite q and ω.
Thermodynamic quantities

Specific heat ratio

\[\gamma = \frac{C_V}{T} = \frac{m^*}{m} \gamma^{(0)} \]

Pauli susceptibility

\[\chi_P = \frac{m^*}{m} \frac{1}{1 + F_0^a \chi_P^{(0)}} \]

Wilson ratio

\[R_W = \frac{4\pi^2 k_B^2 \chi_P}{3(g\mu_B)^2 \gamma} = \frac{1}{1 + F_0^a} \]
Electromagnetic responses

Charge response function

\[\chi_d(q, \omega) = \frac{\chi_{0d}(q, \omega)}{1 - \left(\frac{F_0^s(q, \omega)}{F_1^q(q, \omega)} + d \frac{\omega^2}{v_F^2 q^2} \right) \chi_{0d}(q, \omega) N(0)} \]

Transverse current response function

\[\chi_t(q, \omega) = \frac{\chi_{0t}(q, \omega)}{1 - \frac{F_1^s(q, \omega)}{F_1^q(q, \omega)} + d \frac{\chi_{0t}(q, \omega)}{N(0)} \chi_{0t}(q, \omega) N(0)} \]

\[\chi_{0d}, \chi_{0t} : \text{for a Fermi liquid with effective mass } m^* \text{ in the absence of Landau interactions} \]

Longitudinal current response function

\[\chi_l(q, \omega) = \frac{\omega^2}{q^2} \chi_d(q, \omega) \]

AC conductivity

\[\sigma_{l(t)}(q, \omega) = \frac{e^2}{i\omega} \chi_{l(t)}(q, \omega) \]

In the limit

\[1 + \frac{F_1^s}{d} \to 0 \]

Expand it as

\[\frac{1 + F_1^s(q, \omega)/d}{N(0)} \sim \alpha + \beta \omega^2 + \gamma_1 q_i^2 + \gamma_i q_i^2 \]

\[U > U_c \Rightarrow \alpha = 0 \& \gamma_1 = 0 \quad \text{incompressibility} \]

The other possibility \(F_0^s \to \infty \) would result in complete vanishing of charge response.
Dielectric function

\[\varepsilon(q, \omega) = 1 - \frac{4\pi e^2}{q^2} \chi_d(q, \omega) \sim 1 - 4\pi \beta e^2 v_F^2 N(0)^2 + O(q^2) \]

Insulator: no screening effect even though we start with the metallic side.

AC conductivity

For \(q=0 \) and small \(\omega \),

\[\sigma(\omega) = \frac{\omega \sigma_0(\omega)}{\omega + \left[i/ \beta e^2 N(0)^2 \right] \sigma_0(\omega)} \]

\[\Rightarrow \quad \text{Re}[\sigma(\omega)] \propto \omega^2 \text{Re}[\sigma_0(\omega)] \]

Power law AC conductivity inside the Mott gap.
Quasiparticle scattering amplitude

\[A_{pp'}(q, \omega) - \sum_{p''} f_{pp''} \chi_{0p''}(q, \omega) A_{p''p'}(q, \omega) = f_{pp'} \]

where

\[\chi_{0p''}(q, \omega) = \frac{n_{p-q/2}^0 - n_{p+q/2}^0}{\omega + \xi_{p-q/2} - \xi_{p+q/2}} \approx \frac{q \cdot v_p}{\omega} \frac{\partial n_p^0}{q \cdot v_p - \omega \partial \xi_p} \]

Assuming that the scattering is dominating in the \(l = 1 \) channel,

\[f_{pp'} \sim \frac{p \cdot p'}{P_F^2} f_1^s \]

Using \[\frac{1 + F_1^s(q, \omega) / d}{N(0)} \sim \beta \omega^2 + \gamma q_i^2 \], after some algebra, we obtain

\[
A_{pp'}(q, \omega) \approx \frac{d}{N(0)} \frac{p \cdot p'}{P_F^2} \frac{1}{\omega - ig \frac{\omega}{v_F q} + \gamma q^2}, \quad g = \begin{cases} 1, & d = 2 \\ \frac{\pi}{2}, & d = 3 \end{cases}
\]
Thermal conductivity

Thermal resistivity for a Fermi liquid

\[
\frac{1}{\kappa} = \frac{1}{4} \sum_{1,2,3,4} W(1,2;3,4) n_1^0 n_2^0 (1 - n_3^0)(1 - n_4^0) \left(\phi_1 + \phi_2 - \phi_3 - \phi_4 \right)^2 \left(\sum_1 \phi_1 \xi_1 \mathbf{v}_1 \cdot \mathbf{u} \frac{\partial n_1^0}{\partial \varepsilon_1} \right)
\]

\[
\times \delta(\varepsilon_1 + \varepsilon_2 - \varepsilon_3 - \varepsilon_4) \delta_{\sigma_1+\sigma_2,\sigma_3+\sigma_4} \delta_{p_1+p_2,p_3+p_4} \quad \text{C.J. Pethick, Phys. Rev. 177, 393 (1969)}
\]

\[
n_i = n_0 - \phi_i \frac{\partial n_i^0}{\partial \varepsilon_i}, \quad \mathbf{v}_i \text{ is quasiparticle velocity, } \mathbf{u} \text{ is an arbitrary unit vector along } \nabla T
\]

Trial functions: \(\phi_i = \xi_i \mathbf{v}_i \cdot \mathbf{u}, \quad \xi_i = \varepsilon_i - \mu \)

Scattering probability:

\[
W(1,2;3,4) = 2\pi |A_{pp'}(\mathbf{q}, \omega)|^2
\]

\[
\omega = \varepsilon_{p+q/2} - \varepsilon_{p-q/2} = \varepsilon_{p'+q/2} - \varepsilon_{p'-q/2}
\]
Thermal resistivity due to inelastic scattering between quasiparticles

\[
\frac{1}{\kappa_{in}} \propto \left(\frac{k_B T}{\epsilon_F} \right)^{(d-1)/3}
\]

Thermal resistivity due to elastic impurity scattering

At low temperature, the inelastic scattering is cut off by elastic impurity scattering rate \(\frac{1}{\tau_0} \)

\[
\frac{\kappa_{el}}{T} = \frac{1}{d} \gamma^* v_F^2 \tau_0
\]

\[
\Rightarrow \quad \frac{\kappa}{T} \propto \max \left[\frac{\hbar}{k_B^3} \left(\frac{k_B T}{\epsilon_F} \right)^{(4-d)/3}, \frac{d}{\gamma^* v_F^2 \tau_0} \right]^{-1}
\]

Consistent with U(1) gauge theory,

Collective modes

Charge sector: density fluctuations

\[
\delta n_p = - \frac{\partial n_p^0}{\partial \varepsilon_p} \nu_p \quad \text{energy shift in the direction } \hat{p}
\]

spherical symmetry \[\Rightarrow \quad \nu_p = \sum_l \sum_{m=-l}^l Y_l^m(\theta_p, \phi_p) \nu_l^m\]

Equation of motion: linearized Landau transport equation

\[
\frac{\partial \delta n_p}{\partial t} + \vec{v}_p \cdot \nabla_r \left(\delta n_p - \frac{\partial n_p^0}{\partial \varepsilon_p} \delta \varepsilon_p \right) = I[n_{p'}]
\]

collision integral
Density fluctuation modes in a system with spherical symmetry

- $m = 0$: longitudinal mode
- $m = 1$: transverse mode
- $m = 2$: quadrupolar mode
Zero sound modes in the spin liquid phase: \[1 + \frac{F_s}{3} = 0 \]

Three channel model with only \(F_0^s, F_1^s \) and \(F_2^s \): a weakly damping zero sound mode exists when \(F_2^s > 10/3 \).

\[
S \equiv \frac{\omega}{q v_F}
\]

\[
S = \begin{cases}
\sqrt{\frac{175}{F_2^s}}, & F_2^s \gg \frac{10}{3}, \\
\frac{20 - 11F_2^s}{1}, & 0 < F_2^s - \frac{10}{3} << 1
\end{cases}
\]
Different from Brinkman-Rice picture
Summary

- **Mott transition driven by current fluctuations**
 - An alternative picture of metal-insulator transitions to Brinkman-Rice
 - QSL as a soft gap Mott insulator

- **Phenomenological theory for both Fermi liquids and quantum spin liquids in the vicinity of Mott transition.**
 - FL: both electrically and thermally conducting
 - QSL: electrically insulating but well thermally conducting

- **Mott physics**: characterized by many intrinsic in-gap excitations in such quantum spin liquids.
 - Wilson ratio ~ 1, ac conductivity, dielectric function, thermal conductivity
 - There exist collective modes as well as “quasiparticles”
Acknowledgement

- **Theory**
 - P. A. Lee (MIT)
 - Z. X. Liu (Tsinghua U, Beijing)
 - T. K. Ng (HKUST)
 - H. H. Tu (MPQ)
 - X. G. Wen (MIT / PI)
 - F. C. Zhang (ZJU / HKU)

- **Experiment**
 - K. Kanoda (U Tokyo)
Thank you for attention!